Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Chesapeake Assessment Scenario Tool (CAST) serves multiple key functions in meeting nutrient reduction targets across the Chesapeake Bay Watershed (CBW) and is embedded in the water quality governance system. To investigate contested perspectives regarding the model, we interviewed 59 stakeholders engaged in model governance across the CBW. We recorded statements regarding the accuracy, legitimacy, and credibility of the model, influences on its use, and on challenges and opportunities. We found skepticism regarding the legitimacy of CAST, including suggestions its role facilitates a “paper process” of policy design and that past experience has greater influence on policy decisions than model predictions. However, despite its perceived shortcomings, CAST has been central in helping stakeholders in prioritizing mitigative activities. With respect to credibility, most respondents believe the model underestimates the effects of nutrient-reduction practices, thereby underestimating progress toward TMDL-related goals. Respondents also identified opportunities for model improvement, emphasizing co-benefits of conservation practices over and above nutrient reduction. Overall, our analysis demonstrates a Collaborative Policy Modeling Paradox: collaborative model development is necessary for effective policy modeling, but the political processes of collaborative model development can negatively impact perceptions of salience, credibility, and legitimacy. Although it is important to recognize this paradox, as it is linked to dissatisfaction with the models, our findings also point to areas where improvement has occurred and to future opportunities for development.more » « less
-
Stakeholder participation in social-ecological systems (SES) modeling is increasingly considered a desirable way to elicit diverse sources of knowledge about SES behavior and to promote inclusive decision-making in SES. Understanding how participatory modeling processes function in the context of long-term adaptive management of SES may allow for better design of participatory processes to achieve the intended outcomes of inclusionary knowledge, representativeness, and social learning, while avoiding unintended outcomes. Long-term adaptive management contexts often include political influences -- attempts to shift or preserve power structures and authority, and efforts to represent the political and economic interests of stakeholders -- in the computer models that are used to shape policy making and implementation. In this research, we examine a period that included a major transition in the watershed model used for management of the Chesapeake Bay in the United States. The Chesapeake Bay watershed model has been in development since the 1980s, and is considered by many to be an exemplary case of participatory modeling. We use documentary analysis and interviews with participants involved in the model application and development transition to reveal a variety of ways in which participatory modeling may be subject to different kinds of political influences, some of which resulted in unintended outcomes, including: perceptions of difficulty updating the model in substantive ways, “gaming” of the model/participatory process by stakeholders, and increasing resistance against considering uncertainty in the system not captured by the model. This research suggests unintended or negative outcomes may be associated with both participatory decision-making and stakeholder learning even though they are so often touted as the benefits of participatory modeling. We end with a hypothesis that further development of a theory of computer model governance to bridge model impact and broader theories of environmental governance at the science-policy interface may result in improved SES modeling outcomes.more » « less
-
Abstract With mounting scientific evidence demonstrating adverse global climate change (GCC) impacts to water quality, water quality policies, such as the Total Maximum Daily Loads (TMDLs) under the U.S. Clean Water Act, have begun accounting for GCC effects in setting nutrient load‐reduction policy targets. These targets generally require nutrient reductions for attaining prescribed water quality standards (WQS) by setting safe levels of nutrient concentrations that curtail potentially harmful cyanobacteria blooms (CyanoHABs). While some governments require WQS to consider climate change, few tools are available to model the complex interactions between climate change and benthic legacy nutrients. We present a novel process‐based integrated assessment model (IAM) that examines the extent to which synergistic relationships between GCC and legacy Phosphorus release could compromise the ability of water quality policies to attain established WQS. The IAM is calibrated for simulating the eutrophic Missisquoi Bay and watershed in Lake Champlain (2001–2050). Water quality impacts of seven P‐reduction scenarios, including the 64.3% reduction specified under the current TMDL, were examined under 17 GCC scenarios. The TMDL WQS of 0.025 mg/L total phosphorus is unlikely to be met by 2035 under the mandated 64.3% reduction for all GCC scenarios. IAM simulations show that the frequency and severity of summer CyanoHABs increased or minimally decreased under most climate and nutrient reduction scenarios. By harnessing IAMs that couple complex process‐based simulation models, the management of water quality in freshwater lakes can become more adaptive through explicit accounting of GCC effects on both the external and internal sources of nutrients.more » « less
An official website of the United States government
